20 research outputs found

    Planetary nebulae in the inner Milky Way: new abundances

    Get PDF
    The study of planetary nebulae in the inner-disk and bulge gives important information on the chemical abundances of elements such as He, N, O, Ar, Ne, and on the evolution of these abundances, which is associated with the evolution of intermediate-mass stars and the chemical evolution of the Galaxy. We present accurate abundances of the elements He, N, S, O, Ar, and Ne for a sample of 54 planetary nebulae located towards the bulge of the Galaxy, for which 33 have the abundances derived for the first time. The abundances are derived based on observations in the optical domain made at the National Laboratory for Astrophysics (LNA, Brazil). The data show a good agreement with other results in the literature, in the sense that the distribution of the abundances is similar to those works.Comment: Accepted for publication in RevMexAA (29 pages, 15 figures, 7 tables, uses rmaa.cls

    Planetary nebulae in the inner Milky Way II: the Bulge-Disk transition

    Full text link
    In this work, a sample of planetary nebulae located in the inner-disk and bulge of the Galaxy is used in order to find the galactocentric distance which better separates these two populations, from the point of view of abundances. Statistical distance scales were used to study the distribution of abundances across the disk-bulge interface. A Kolmogorov-Smirnov test was used to find the distance in which the chemical properties of these regions better separate.The results of the statistical analysis indicate that, on the average, the inner population has lower abundances than the outer. Additionally, for the α\alpha-elements abundances, the inner population does not follow the disk radial gradient towards the galactic center. Based on our results, we suggest a bulge-disk interface at 1.5 kpc, marking the transition between the bulge and inner-disk of the Galaxy, as defined by the intermediate mass population.Comment: 21 pages, 6 figures, accepted for publication in RMxA

    2D-Galactic chemical evolution: The role of the spiral density wave

    Get PDF
    © 2019 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. We present a 2D chemical evolution code applied to a Milky Way type Galaxy, incorporating the role of spiral arms in shaping azimuthal abundance variations, and confront the predicted behaviour with recent observations taken with integral field units. To the usual radial distribution of mass, we add the surface density of the spiral wave and study its effect on star formation and elemental abundances. We compute five different models: one with azimuthal symmetry which depends only on radius, while the other four are subjected to the effect of a spiral density wave. At early times, the imprint of the spiral density wave is carried by both the stellar and star formation surface densities; conversely, the elemental abundance pattern is less affected. At later epochs, however, differences among the models are diluted, becoming almost indistinguishable given current observational uncertainties. At the present time, the largest differences appear in the star formation rate and/or in the outer disc (R ≥ 18 kpc). The predicted azimuthal oxygen abundance patterns for t ≤ 2 Gyr are in reasonable agreement with recent observations obtained with VLT/MUSE for NGC 6754

    The time evolution of the Milky Way's oxygen abundance gradient

    Get PDF
    © 2018 The Author(s). We study the evolution of oxygen abundance radial gradients as a function of time for the Milky Way Galaxy obtained with our MulChem chemical evolution model. We review the recent data of abundances for different objects observed in our Galactic disc. We analyse with our models the role of the growth of the stellar disc, as well as the effect of infall rate and star formation prescriptions, or the pre-enrichment of the infall gas, on the time evolution of the oxygen abundance radial distribution. We compute the radial gradient of abundances within the disc, and its corresponding evolution, taking into account the disc growth along time. We compare our predictions with the data compilation, showing a good agreement. Our models predict a very smooth evolution when the radial gradient is measured within the optical disc with a slight flattening of the gradient from ∼-0.057 dex kpc-1 at z = 4 until values around ∼-0.015 dex kpc-1 at z = 1 and basically the same gradient until the present, with small differences between models. Moreover, some models show a steepening at the last times, from z = 1 until z = 0 in agreement with data which give a variation of the gradient in a range from -0.02 to -0.04 dex kpc-1 from t = 10 Gyr until now. The gradient measured as a function of the normalized radius R/Reff is in good agreement with findings by CALIFA and MUSE, and its evolution with redshift falls within the error bars of cosmological simulations

    Shape of the oxygen abundance profiles in CALIFA face-on spiral galaxies

    Full text link
    Astronomy & Astrophysics 587 (2016): A70 reproduced with permission from Astronomy & AstrophysicsWe measured the gas abundance profiles in a sample of 122 face-on spiral galaxies observed by the CALIFA survey and included all spaxels whose line emission was consistent with star formation. This type of analysis allowed us to improve the statistics with respect to previous studies, and to properly estimate the oxygen distribution across the entire disc to a distance of up to 3-4 disc effective radii (re). We confirm the results obtained from classical H ii region analysis. In addition to the general negative gradient, an outer flattening can be observed in the oxygen abundance radial profile. An inner drop is also found in some cases. There is a common abundance gradient between 0.5 and 2.0 re of αO/H =-0.075 dex/re with a scatter of σ = 0.016 dex/re when normalising the distances to the disc effective radius. By performing a set of Kolmogorov-Smirnov tests, we determined that this slope is independent of other galaxy properties, such as morphology, absolute magnitude, and the presence or absence of bars. In particular, barred galaxies do not seem to display shallower gradients, as predicted by numerical simulations. Interestingly, we find that most of thegalaxies in the sample with reliable oxygen abundance values beyond ~2 effective radii (57 galaxies) present a flattening of the abundance gradient in these outer regions. This flattening is not associated with any morphological feature, which suggests that it is a common property of disc galaxies. Finally, we detect a drop or truncation of the abundance in the inner regions of 27 galaxies in the sample; this is only visible for the most massive galaxiesWe acknowledge financial support from the Spanish Ministerio de Economía y Competitividad (MINECO) via grant AYA2012-31935, and from the “Junta de Andalucía” local government through the FQM-108 project. We also acknowledge support to the ConaCyt funding program 180125. Y.A. acknowledges fi- nantial support from the Ramón y Cajal programme (RyC-2011-09461). Y.A. and A.I.D. acknowledge support from the project AYA2013-47742-C4-3-P from the Spanish MINECO, as well as the “Study of Emission-Line Galaxies with Integral-Field Spectroscopy” (SELGIFS) programme, funded by the EU (FP7- PEOPLE-2013-IRSES-612701). Support for L.G. is provided by the Ministry of Economy, Development, and Tourism’s Millennium Science Initiative through grant IC120009, awarded to The Millennium Institute of Astrophysics, MAS. LG acknowledges support by CONICYT through FONDECYT grant 3140566. R.M.G.D. acknowledges support from the Spanish grant AYA2014-57490-P, and from the “Junta de Andalucía” P12-FQM2828 project. RAM thanks the Spanish program of International Campus of Excellence Moncloa (CEI). IM and A.d.O. acknowledge support from the Spanish MINECO grant AYA2013-42227P. JMA acknowledges support from the European Research Council Starting Grant (SEDmorph, P.I. V. Wild). Support for MM has been provided by DGICYT grant AYA2013-47742-C4-4-P. PSB acknowledges support from the Ramón y Cajal programme, grant ATA2010-21322-C03-02 from the Spanish MINECO. CJW acknowledges support through the Marie Curie Career Grant Integration 30391

    Shape of the oxygen abundance profiles in CALIFA face-on spiral galaxies

    Get PDF
    Y.A. acknowledges financial support from the Ramón y Cajal programme (RyC-2011-09461). Y.A. and A.I.D. acknowledge support from the project AYA2013-47742-C4-3-P from the Spanish MINECO, as well as the “Study of Emission-Line Galaxies with Integral-Field Spectroscopy” (SELGIFS) programme, funded by the EU (FP7-PEOPLE-2013-IRSES-612701). Support for L.G. is provided by the Ministry of Economy, Development, and Tourism’s Millennium Science Initiative through grant IC120009, awarded to The Millennium Institute of Astrophysics, MAS. LG acknowledges support by CONICYT through FONDECYT grant 3140566. R.M.G.D. acknowledges support from the Spanish grant AYA2014-57490-P, and from the “Junta de Andalucía” P12-FQM2828 project. RAM thanks the Spanish program of International Campus of Excellence Moncloa (CEI). IM and A.d.O. acknowledge support from the Spanish MINECO grant AYA2013-42227P. JMA acknowledges support from the European Research Council Starting Grant (SEDmorph, P.I. V. Wild). Support for MM has been provided by DGICYT grant AYA2013-47742-C4-4-P. PSB acknowledges support from the Ramón y Cajal programme, grant ATA2010-21322-C03-02 from the Spanish MINECO. CJW acknowledges support through the Marie Curie Career Grant Integration 303912.We measured the gas abundance profiles in a sample of 122 face-on spiral galaxies observed by the CALIFA survey and included all spaxels whose line emission was consistent with star formation. This type of analysis allowed us to improve the statistics with respect to previous studies, and to properly estimate the oxygen distribution across the entire disc to a distance of up to 3-4 disc effective radii (re). We confirm the results obtained from classical H ii region analysis. In addition to the general negative gradient, an outer flattening can be observed in the oxygen abundance radial profile. An inner drop is also found in some cases. There is a common abundance gradient between 0.5 and 2.0 re of αO/H =-0.075 dex/re with a scatter of σ = 0.016 dex/re when normalising the distances to the disc effective radius. By performing a set of Kolmogorov-Smirnov tests, we determined that this slope is independent of other galaxy properties, such as morphology, absolute magnitude, and the presence or absence of bars. In particular, barred galaxies do not seem to display shallower gradients, as predicted by numerical simulations. Interestingly, we find that most of thegalaxies in the sample with reliable oxygen abundance values beyond ~2 effective radii (57 galaxies) present a flattening of the abundance gradient in these outer regions. This flattening is not associated with any morphological feature, which suggests that it is a common property of disc galaxies. Finally, we detect a drop or truncation of the abundance in the inner regions of 27 galaxies in the sample; this is only visible for the most massive galaxies.Publisher PDFPeer reviewe

    IC 4663: the first unambiguous [WN] Wolf-Rayet central star of a planetary nebula

    Get PDF
    We report on the serendipitous discovery of the first central star of a planetary nebula (PN) that mimics the helium- and nitrogen-rich WN sequence of massive Wolf–Rayet (WR) stars. The central star of IC 4663 (PN G346.2−08.2) is dominated by broad He II and N V emission lines which correspond to a [WN3] spectral type. Unlike previous [WN] candidates, the surrounding nebula is unambiguously a PN. At an assumed distance of 3.5 kpc, corresponding to a stellar luminosity of 4000 L⊙, the V= 16.9 mag central star remains 4–6 mag fainter than the average luminosity of massive WN3 stars even out to an improbable d= 8 kpc. The nebula is typical of PNe with an elliptical morphology, a newly discovered asymptotic giant branch (AGB) halo, a relatively low expansion velocity (vexp= 30 km s−1) and a highly ionized spectrum with an approximately solar chemical abundance pattern. The [WN3] star is hot enough to show Ne VII emission (T*= 140 ± 20 kK) and exhibits a fast wind (v∞= 1900 km s−1), which at d= 3.5 kpc would yield a clumped mass-loss rate of forumla= 1.8 × 10−8 M⊙ yr−1 with a small stellar radius (R*= 0.11 R⊙). Its atmosphere consists of helium (95 per cent), hydrogen (<2 per cent), nitrogen (0.8 per cent), neon (0.2 per cent) and oxygen (0.05 per cent) by mass. Such an unusual helium-dominated composition cannot be produced by any extant scenario used to explain the H-deficiency of post-AGB stars. The O(He) central stars share a similar composition and the discovery of IC 4663 provides the first evidence for a second He-rich/H-deficient post-AGB evolutionary sequence [WN] →O(He). This suggests that there is an alternative mechanism responsible for producing the majority of H-deficient post-AGB stars that may possibly be expanded to include other He-rich/H-deficient stars such as R Coronae Borealis stars and AM Canum Venaticorum stars. The origin of the unusual composition of [WN] and O(He) central stars remains unexplained
    corecore